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Simulating the morphology and mechanical properties of filled diblock copolymers
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Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

~Received 4 November 2002; published 14 March 2003!

We couple a morphological study of a mixture of diblock copolymers and spherical nanoparticles with a
micromechanical simulation to determine how the spatial distribution of the particles affects the mechanical
behavior of the composite. The morphological studies are conducted through a hybrid technique, which com-
bines a Cahn-Hilliard~CH! theory for the diblocks and a Brownian dynamics~BD! for the particles. Through
these ‘‘CH-BD’’ calculations, we obtain the late-stage morphology of the diblock-particle mixtures. The output
of this CH-BD model serves as the input to the lattice spring model~LSM!, which consists of a three-
dimensional network of springs. In particular, the location of the different phases is mapped onto the LSM
lattice and the appropriate force constants are assigned to the LSM bonds. A stress is applied to the LSM
lattice, and we calculate the local strain fields and overall elastic response of the material. We find that the
confinement of nanoparticles within a given domain of a bicontinous diblock mesophase causes the particles to
percolate and form essentially a rigid backbone throughout the material. This continuous distribution of fillers
significantly increases the reinforcement efficiency of the nanoparticles and dramatically increases the Young’s
modulus of the material. By integrating the morphological and mechanical models, we can isolate how modi-
fications in physical characteristics of the particles and diblocks affect both the structure of the mixture and the
macroscopic behavior of the composite. Thus, we can establish how choices made in the components affect the
ultimate performance of the material.

DOI: 10.1103/PhysRevE.67.031802 PACS number~s!: 62.20.Dc, 62.25.1g, 64.75.1g, 66.30.Jt
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I. INTRODUCTION

The blending of nanoparticles and polymers provide
means of creating hybrid materials that integrate the de
able features of each of the constituents. For example,
particles impart stiffness and the polymers prevent the m
rial from being brittle. If the nanoparticles are metals
semiconductors, the composite can exhibit the unique e
trical, optical, or magnetic properties of the inorganics a
the flexibility and processibility of the polymers. Recent
there has been considerable interest in blending nanopart
and diblock copolymers@1–17# to create materials for flex
ible batteries@1#, photonic band gap devices@6# and nano-
electrode arrays@13,14#. One of the challenges in designin
such complex materials is predicting the macroscopic beh
ior of the composite based upon such constituent chara
istics as the diblock architecture and the nanoparticle sur
chemistry. By addressing this challenge, researchers c
ultimately understand how choices made in the initial des
stage affect the final materials’ performance and facilitate
efficient fabrication of composites with the desired prop
ties.

Here, we seek to tackle this issue by integrating two d
ferent computational approaches and thereby relate the p
mer architecture, the wetting interactions between the p
mer and particles, the structure of the mixture, and
mechanical behavior of the resulting material. In particu
we use a hybrid method@18–23# that combines a Cahn
Hilliard ~CH! model for the diblocks and a Brownian dynam
ics ~BD! simulation for the particles in order to determine t
structural evolution of the particle-filled copolymer melt. A
we detail further below, the approach allows us to specify
architecture of the chains and the nature of the polym
1063-651X/2003/67~3!/031802~12!/$20.00 67 0318
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particle interactions. In this paper, we will refer to this hybr
method as the CH-BD model.

The output of the CH-BD simulation then serves as
input to the lattice spring model~LSM!, a micromechanical
model that captures the elastic properties and mechanica
sponse of the composite. By combining the CH-BD a
LSM models, we can determine how the structural evoluti
or the history of the material, affects the mechanical respo
@24#. Furthermore, we do not have to makead hocassump-
tions about the distribution of particles in the system; t
distribution evolves naturally from the self-assembling int
actions between the different components. Through the LS
we can carry out three-dimensional simulations that inclu
as many as 1564 particles. In particular, the studies repo
here represent the first 3D studies on the mechanical pro
ties of such extensive filled copolymer systems. The res
allow us to determine how changes in the nature of the co
ponents influence the macroscopic properties of the com
ite.

One reason for focusing on mixtures of diblocks a
nanoparticles is that the self-assembly of the diblocks can
exploited to direct the distribution of the nanoparticles with
the mixture@8,25–27# and thus, achieve a degree of contr
over the morphology of the system. For example, if the p
ticles are preferentially wetted by theA blocks of a system of
AB diblocks, the particles will localize within theA domains
of the microphase separated melt. In recent computatio
studies that involve the hybrid CH-BD model, Ginzbu
et al. @23# showed that in the presence of theAB diblocks,
theseA-like particles in fact form a percolated network at
significantly lower volume fraction~essentially half! than
would be required in a homogeneous material~i.e., ho-
mopolymer melt!. In this study, one of our aims is to dete
©2003 The American Physical Society02-1
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mine how these percolating networks act to reinforce
copolymer matrix.

The two main numerical techniques that can be used
investigate the reinforcing properties of the filler particles
the finite element method~FEM! and the LSM. The FEM, a
discretized continuum model, is the dominant technique e
ployed in micromechanical modeling. The FEM emplo
preprocessed mesh generation, which enables the mod
fully capture the spatial discontinuities of highly inhomog
neous materials. The FEM techniques also allow comp
nonlinear tensile relationships to be incorporated into
analysis. In three dimensions, the FEM micromechan
simulations generally employ a unit-cell methodology or
axisymmetric approach; these models possess translat
and reflective symmetry, respectively. Utilizing both unit-c
and axisymmetric systems, Christmanet al. @28# and Llorca
et al. @29# investigated SiC reinforced aluminum composite
Hom and McMeeking@30# employed a unit-cell simulation
to study a cubic array of rigid spheres in an elastic-perf
plastic matrix. In order to investigate clustering effects,
particles may be displaced towards axisymmetric bounda
although this assumes an infinite array of clustering effe
@29,31#. A regular distribution of three clustered particles
an infinite system was modeled using an axisymmetric s
tem by Thomsonet al. @32#. A repeated pattern of particle
allowed clustering effects to be considered, while parti
decohesion was accounted for through the use of a trac
separation relation similar to Needleman@33#. Simulations
addressing significantly larger collections of particles w
performed by Gusevet al. @34#, in which a periodic elastic
system, containing up to 64 spherical particles, was use
calculate the overall elastic constants. Recently, a sim
multiparticle system has been considered by Bo¨hm @35#, in
which systems containing 20 particles where deformed.
number of particles that can be simulated is limited by
computational expense of the FEM, and a more computat
ally efficient technique is required to simulate larger syst
sizes.

The LSMs of elasticity consist of a network of interco
necting springs, the properties of which can be varied
tailor the response of the system and to ensure that the m
conforms to elasticity theory. One variety of the LSM is t
Born LSM, which is a macroscopic equivalent of the Bor
Huang model for microscopic elasticity@36#. The extension
of a spring is energetically penalized by way of a cent
force constant, while a lack of rotational freedom is impos
upon the springs through the introduction of a noncen
force constant@37,38#. Rotation of this system from the ne
works’ original orientation results in a restoring force, a
though the configuration is otherwise unchanged. This l
of rotational invariance does not have a significant effect
small displacements@37#, for which this model can be show
to be equivalent to the mathematical theory of an isotro
elastic continuum@39#. More complicated rotationally invari
ant three-body interactions have been considered@40#, al-
though the additional computational expense is unwarran
in systems where rotations are assumed to be small.

The majority of the LSM particulate simulations hav
been the two-dimensional investigations of circular inc
03180
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sions@41–45#. Recently, three-dimensional simulations ha
included a spherical particle in the presence of plastic
@39#, while we have applied a three-dimensional mul
inclusion Born LSM to the numerical investigation of vis
coelastic polymers reinforced with either platelets, rods,
spheres@46#. These studies reveal that the LSM is becomi
an increasingly valuable technique in the numerical simu
tion of micromechanics. As we show in the studies describ
below, when the LSM is coupled with a computational mod
that reveals the morphology of complex mixtures, the in
grated approach can be used to establish structure-prop
relationships for a broad class of materials.

It should be noted, however, that the application of co
tinuum mechanics to systems on the nanoscale might be
tending the traditional applicability of the LSM, since th
mechanical behavior in nanocomposites is dictated by m
discrete phenomena. That said, the potential wealth of qu
tative information that can be obtained concerning the de
mation of complex morphologies associated with nanoco
posites warrants the application of such techniques.

This paper is organized as follows: in Sec. II, a descr
tion of the simulation techniques for modeling the structu
evolution of diblock-particle mixtures and the micromecha
ics of solid polymeric composites is given. In Sec. III, w
investigate the effects of varying the diblock copolymer
chitecture and particle volume fraction on the morphologi
and mechanical behavior. The effects of size and polydis
sity in the particle system are also investigated. In Sec. IV
summary of results is provided and conclusions are draw

II. MODEL

A. Determining the morphology of diblock-particle mixtures

The system consists of anAB diblock copolymer melt
and mobile nanoparticles. We simulate the behavior of t
mixture on a three-dimensional cubic lattice, which is 63

sites in size and has periodic boundary conditions in all th
directions. The copolymer melt is characterized by the sc
order parameterC which describes the local concentratio
difference between theA and B components. Note thatC
521 ~1! corresponds to the equilibrium order parameter
A-rich (B-rich! phase. In this version of the model, the pa
ticles in the system are ‘‘soft’’ or penetrable, since we negl
excluded volume interactions between the particles and
fluid. ~Excluded volume interactions can be explicitly in
cluded in the model@23#; for corresponding systems, bot
the ‘‘hard’’ and ‘‘soft’’ fillers yield similar results for the
particle distributions.! The particles have an affinity for theA
block. This affinity is introduced via a polymer-particle co
pling term in the free energy~as described below!. Thus, the
microphase separation of the diblocks can affect the spa
distribution of the particles and the particles can influen
the size and morphology of the polymer domains.

The CH equation@47,48# describes the phase separati
of a binary mixture by spinodal decomposition, in the a
sence of hydrodynamics. The dynamics of microphase s
regation for a diblock copolymer melt is described by t
traditional CH equation with the addition of the ter
2G(C2 f ) @49#, whereG determines the thickness of th
2-2
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domain structure andf describes the asymmetry of th
diblock. The case off 50 describes a 50:50 symmetr
diblock. The kinetic equation for the order parameter for t
system is

]C

]t
5M,2

dF

dC
2G~C2 f !1j, ~1!

where M is the kinetic coefficient~mobility! of the order
parameter field, andj is the noise field~which is presently
set to zero!. F is the local energy term and is given byF
5Fd1Fcpl . In the current study,Fd is given by

Fd5E 2A ln@cos~C!#1
1

2
C21

D

2
~,C!2]r , ~2!

whereA and D are material specific parameters and the
tegration is over the volume of the system.

The nanoparticles are introduced through the coup
free energy,Fcpl . This free energy describes the interacti
between the soft particles and the polymer, and ensures
the forces on the particle due to the presence of the poly
induce equal and opposite forces within the polymer. T
coupling free energy is of the form

Fcpl5zE (
i

U~r 2xi !@C~r !2Cs#
2]r , ~3!

wherez is a material constant,xi is the position of thei th

particle, andCs is the desired value of the order parameter
the particle surface. To model the fact that the particles h
an affinity for theA phase, we setCs521. The potential
U() is nonlinear, and is given by

U~r 2xi !5expS 2
r 2xi2R

r 0
D ;~r 2xi !.R, ~4!

U~r 2xi !51;~r 2xi !,R.

The parameterr 0 sets the range of the interaction andR is
the radius of the particle.

The motion of the particles is dictated by the Langev
equation

]xi

]t
52M P

]F

]xi
1h, ~5!

whereM P is the particle mobility andh is a Gaussian white
noise term. It should be noted, however, that particles
prohibited from overlapping~i.e., if a particles’ new position
causes it to overlap with another particle, the move is
jected!. In this sense, a hard core interaction between
particles is imposed. Through the coupled Eqs.~1! and ~5!,
the ordering dynamics of the diblock copolymers is in
grated with the diffuse motion of the nanoparticles.

A cell dynamical system~CDS!, or cellular automaton
methodology is used to evolve the order parameter field
the microphase-separating copolymer melt@50,51#. The em-
ployment of CDS@rather than a conventional discretizatio
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of Eq. ~1!# significantly reduces the computational expen
of the simulations. The discrete equations are of the form

C~r ,t11!5G@C~r ,t !#2^G@C~r ,t !#2C~r ,t !&

2G~C2 f !, ~6!

where a hyperbolic tangent model is included in the funct
G, although the results are insensitive to this choice of m
@50#. In particular,

G@C~r ,t !#5A tanh~C!1
]Fcpl

]c
1D@^C~r ,t !&2C~r ,t !#.

~7!

In the current simulation, the parameters are assigned
following values:A51.3 andD50.5; these parameters co
respond to an intermediate-to-strong segregation regime
the diblock. The operator̂* & indicates the isotopic spatia
average over the neighboring nodes, and@^* &2* # can be
considered as a discrete generalization of the Laplacian
three dimensions, the spatial average on a cubic lattic
given by

^* &5
6

80 (
NN

* 1
3

80 (
NNN

* 1
1

80 (
NNNN

*, ~8!

where NN, NNN, and NNNN represent the nearest, ne
nearest, and next-next-nearest neighbors, respectively@52#.
This form of spatial averaging operator ensures isotropy.

B. Determining the micromechanical behavior of solid
polymeric composites

A lattice spring model enables the micromechanical
vestigation of a solid polymer to be undertaken. The mo
discretizes the continuum elastic behavior of a given mate
onto a simple cubic lattice. This lattice consists of a netwo
of nearest and next-nearest neighbor interactions, which
harmonic in nature. These harmonic interactions~springs!
result in linear forces between lattice sites~nodes!, which
enable the emergence of linear elastic behavior. The en
associated with a nodem in the lattice is taken to be of the
form

Em5
1

2 (
n

~um2un!•Mmn•~um2un!, ~9!

where the summation is over all the neighboring nodesn,
connected tom by a spring. The termum is the displacemen
of nodem from its original position, andMmn is a symmetric
matrix that introduces the elastic properties of the sprin
through central and noncentral force constants.

It has been shown that this system of springs obeys
first order in the displacement, the equations of continu
elasticity theory for an isotropic medium, whose elastic co
stants can be determined in terms of the elements of
matricesMmn @39#. The Young’s modulusE and Poisson’s
ratio n are of the form
2-3
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E5
5k~2k13c!

4k1c
, n52

k2c

c14k
, ~10!

wherek andc are the central and noncentral force constan
respectively@39#.

The force constants are initially associated with the nod
Nodes are assigned different values depending upon the
cation in the material where they are situated. The force c
stants for the springs are then averaged from the nodes w
they connect. The harmonic form of the energy results
forces that are linearly dependent upon the displacemen
the nodes. If forces are applied to the boundary nodes,
the spring constants specified, then the nodal displacem
can be obtained through a set of sparse linear equati
These equations are solved using a conjugate grad
method to find the equilibrium configuration that corr
sponds to no net force at each node@39#.

In order to present relevant deformation fields, the str
and strain tensors are calculated from the forces and
placements. The strain tensor can be obtained through a fi
difference approximation of the displacement field. A cent
difference approximation can be used,

dxu( i , j ,k)5
1

12
@2u( i 12,j ,k)18u( i 11,j ,k)28u( i 21,j ,k)

1u( i 22,j ,k)#, ~11!

whereu( i , j ,k) is the displacement field at coordinatesi , j , k,
andh is the initial distance between adjacent nodes; alter
tively, forward or backward approximations are considered
system boundaries. The stress tensor is directly obtain
from the forces acting on a node~the center of a cubic uni
cell! @40#,

s i j 5

(
m

Fm•ni j
m

A
. ~12!

Here,(m represents a sum over the cube surfaces,Fm is the
force on any surfacem of the cubic cell, whileni j

m is a unit
vector either normal or parallel to the surfacem, andA is the
surface area. The scalar stress and strain values quoted
correspond to the normal stress and strain components in
tensile direction.

In order to assess the effective reinforcement provided
the particles within the composite, we determine the rela
quantities (u2u0)/u0, whereu is the strain field andu0 is
the homogeneous response of the unreinforced polym
matrix. The average strain in the system can be determ
through the average nodal displacements at the sys
boundaries, in the tensile direction. The average strain
the applied stress can then be used to calculate the You
modulus~stress of a material divided by its strain!. This al-
lows the global stiffness of this locally heterogeneous ma
rial to be determined.

As noted above, the elastic properties of the sprin
within an LSM simulation are assigned values depend
upon whether the node is situated within a particle or
03180
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polymer matrix, as dictated by the results of the CH-B
calculation. In order to accurately capture the deformat
fields in the vicinity of the particles within the LSM, th
system size is doubled from that of the CH-BD simulatio
An LSM consisting of 1483 nodes is utilized; the centra
1283 nodes are assigned elastic properties as a functio
the particle and polymer positions in the CH-BD calculatio
The system is extended by ten unit lengths in all directio
taking values from the periodicity of the CH-BD simulatio
therefore ensuring that all areas of the CH-BD model
represented by bulk nodes in the LSM simulation.

III. RESULTS

A. Uniform particle size

We initially consider the effects of diblock copolymer a
chitecture and particle volume fraction on the resultant m
phological and mechanical characteristics. In the followi
simulations, the parametersM and M p @in Eqs. ~1! and ~5!,
respectively# are set equal to 1. Three different diblock c
polymers are considered, corresponding to the following
rameters:~a! G50.004 and f 50.0 , ~b! G50.016 and f
50.0, and~c! G50.004 andf 50.2 @see Eq.~1!#. The pa-
rameterG is inversely proportional toN2, whereN is the
degree of polymerization of the copolymer. Thus, an incre
in G corresponds to a decrease in the domain size. Varyif
from 0.0 to 0.2 changes the composition from 50:50 to 60
~particles are incorporated into the minority phase!. There-
fore, the effects of domain size and composition are ta
into consideration. A range of particle volume fraction
varying from 5% to 25%, are also considered, where
particle radius is three unit lengths~six unit lengths in the
LSM!. This range in volume fraction of particles correspon
to a variation in the number of particles from 116 to 580
the simulations.

The morphology of a filled diblock copolymer system
late times (t550 000) is presented in Fig. 1. The paramet
of the diblock copolymer areG50.004 andf 50.0, and the
volume fraction of particles is 20%. The isosurface of t
diblock copolymer at an order parameter of zero~midway
between phaseA and phaseB) is colored blue, while the
regions where a positive order parameter intersects the
tem boundaries~termed isocaps! are colored red. In othe
words, the red regions mark theB phase and the transpare
regions indicate theA phase. The particles are colored blac
and are clearly confined within the transparentA phase of the
diblock. The system shows elements of lamellar ordering
a short scale, however, the lamellas are interconnected,
the overall morphology is closer to a bicontinuous structu
While the system will tend towards the thermodynamic lim
of a perfect lamellar phase, the time scales for reaching
state through a dynamic model are prohibitively large.
experimental systems, similar morphologies are found
cause again it takes long times to reach perfectly orde
phases and the system can get kinetically trapped.

In order to quantify the confinement of nanoparticl
within the diblock copolymer domains, the particle corre
tion function is presented in Fig. 2. The particle correlati
function adopted in this study is defined asg(r )
2-4
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FIG. 1. ~Color! Three-dimensional morphology of a filled diblock copolymeric system. An isosurface inbetween theA andB components
is colored blue, isocaps are colored red, and the particles are colored black.
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5V^(i(jÞid(r2rij)&/(4pr2Np
2), whereV is the volume of the

system andNp is the number of particles. The results a
averaged over three independent runs. For clarity, only
diblock copolymer systems are shown (G50.004 andG

FIG. 2. The pair correlation function@defined as g(r )
5V^( i( j Þ id(r 2r i j )&/(4pr 2Np

2)] for particles confined in two
diblock copolymer systems and for randomly dispersed particle
03180
o

50.016 at f 50.0) as the third exhibited similar result
There is only one discernible peak at a distance of six u
lengths, which corresponds to the diameter of the partic
This reveals that the system of particles exhibit strong sh
range order, but do not display long range order. The p
ticles are forced to lie within close proximity of each oth
due to the confinement within the diblock copolymer, b
long range order is suppressed due to the tortuous struc
of the diblock domains. For comparison, the particle cor
lation functions for an equivalent number of randomly d
persed particles, which exhibit no such confinement, are
presented. As can be seen, there is no local ordering of
particle positions and the peaks observed in the diblock
polymer systems are no longer present.

To assess the consequences of such morphological v
tions upon the resultant mechanical properties of the ma
scopic material, we now use the output from our hybrid C
and Langevin dynamics simulations as the input for
LSM. The elastic deformation of the structures is undertak
with both the force constants of theA andB phases being se
to unity, while the particles are assigned a force constan
2-5
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FIG. 3. ~Color! The relative strain fields@defined as (u2u0)/u0, whereu0 is the response of the unreinforced polymeric matrix# for ~a!
a system where the particles are confined within the domains of a diblock copolymer and~b! a system consisting of randomly dispersed
particles.
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100. Thus, the effects of particle distribution are of prima
interest in the current investigations, and the parameters
consistent with experimental values for filled polymers@53#.

The local relative strain field, as a result of the applicat
of a constant stress at the simulation boundaries, for a sys
where the particles are confined within the domains o
diblock copolymer (G50.004 andf 50.0) is depicted in Fig.
3~a!. The corresponding relative strain field for a system c
sisting of randomly dispersed particles is presented in F
3~b!. The three-dimensional strain fields are displayed as
thogonal contours through the simulation. In both syste
the volume fraction of particles is 20%. The particles a
clearly apparent as the dark blue regions of low strain.
particular, the strain values within the particles are sign
cantly lower than that of the matrix, due to the large dispa
in elastic constants. The inability of stiff particles to defor
to the same extent as the neighboring matrix results in st
concentrations at the particle-matrix interface. These st
concentrations lie along the tensile direction and eman
from the center of a particle. Perpendicular to the ten
direction, the lower deformations within the particle inhib
the deformation of the matrix and result in lower stra
fields.

It is apparent from Fig. 3~a! that the diblock-confined par
ticles are clustered together, while the particles in Fig. 3~b!
are more randomly dispersed. It is this clustering of the c
fined particles that is of primary interest. In order to char
terize the particle clusters, and determine whether or not g
metric percolation occurs, we define particles that are clo
than a certain distance to be part of the same cluster. H
we adopt a unit length in the LSM simulations as this ch
acteristic distance. Using this definition, we find that the c
fined particle system in Fig. 3~a! forms a percolating cluster
~We note that Ginzburget al. @23# found the percolation
threshold for particles confined in a similar diblock matrix
be '10%.!

The percolating structure inhibits the deformation of t
entire material and results in significant reductions in
strain fields, as can be seen by the presence of the pu
domains in Fig. 3~a!. Alternatively, the randomly disperse

FIG. 4. The cumulative distribution function of the relative loc
strain field for systems consisting of randomly dispersed parti
and systems where the particles are confined within the domain
a diblock copolymer.
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system shows isolated regions of strain relaxation within
particles, but the inhibition of the neighboring matrix is le
dramatic than in Fig. 3~a!. Consequently, the strain conce
trations~shown in red and yellow! within the matrix of the
randomly dispersed system are also more pronounced a
gions within the matrix attempt to deform to the same ext
as domains that neighbor the scattered particles. Such a
of strain concentration are less apparent in Fig. 3~a!. These
plots indicate that the confinement of nanoparticles wit
one of the domains of the bicontinuous structure leads t
continuous network of stiff material, which reduces the ov
all strain field within the system.

In order to quantify the deformation of the above confin
and randomly dispersed particle systems, the cumulative
tribution functions of the local strain fields are plotted in Fi
4. The cumulative distribution function is defined as t
probability that the field in the system takes a value less t
or equal to a specific amount. A comparison between c
fined and randomly dispersed particle systems is made
particle volume fractions varying from 5% to 25%. Th
lower strains are invariably associated with the stiffer p
ticles, while the regions of higher strains correspond to
matrix. At 5%, there would appear to be little differenc
between the two systems, since the confined particles do
percolate at such a low value. At higher particle volume fra
tions, the disparity between the two systems becomes m
apparent, with the confined particle systems possessing
nificantly lower strain fields. As noted above, the geome
percolation inhibits the local strain fields, and therefore st
ens the composite material.

In Fig. 5, we plot the percentage increase in the Youn
modulus relative to the unreinforced polymer for the vario
systems described above. This parameter is a measure o
macroscopic mechanical properties of these composites.
results are averaged over three independent runs, with
error bars indicating the standard deviation. The three ca
involving particles confined within the domains of dibloc
copolymers are significantly stiffer than the system conta
ing randomly dispersed particles. There is no clear differe
between the three confined particle systems, with the e
bars showing a clear overlap. For the systems studied he
is not possible to distinguish effects that diblock copolym
architecture or composition may have on the reinforcem
efficiency of the nanoparticle fillers. There is, however,
significant benefit in confining the particles within th
diblock copolymer domains.

B. Binary particle systems

We also investigate the effects of adding a binary parti
mixture to the copolymer matrix. The particles in the bina
mixture are chemically identical~i.e., they both favor theA
phase!, but differ in size. The smaller particles have a rad
of 2 and the larger particles have a radius of three u
lengths. These studies provide insight into the role that po
dispersity in particle size plays in the mechanical proper
of the composite. The total volume fraction of particles
held fixed at 20% and the ratio of small to large fillers
varied between the limiting cases of all small~1564 par-

s
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G. A. BUXTON AND A. C. BALAZS PHYSICAL REVIEW E 67, 031802 ~2003!
FIG. 5. The percentage increase in Young’s modulus as a fu
tion of particle volume fraction. Systems containing particles c
fined within the domains of various diblock copolymers are co
pared with a system consisting of randomly dispersed particles
area
s-

03180
ticles! and all large~464 particles!. A comparison of the re-
sults for the purely large and small fillers yields insight in
the effects of particle size on the behavior of the system
these studies, the parameters that characterize the dib
copolymers are fixed atG50.004 andf 50.0.

Figure 6 shows the morphology for a system contain
10% of large and 10% of small particles. The particles
again clearly confined within theA domains of the diblock
copolymer. Note that the particles selectively swell the
compatibleA regions, giving the diblock matrix in Fig. 6 a
asymmetric appearance. However, here as in the other c
described in this section, the copolymer is a symme
diblock.

It is also clear from Fig. 6 that the small particles c
readily penetrate and localize in regions between the la
particles. At a fixed particle volume fraction, decreasing
size of the particles results in an increase in the totalnumber
of particles and hence, an effective increase in the particu
surface area. Consequently, there is a greater surface
available for possible polymer-particle interactions. To illu
trate this point, we defineVp as the volume fraction of poly-

c-
-
-

FIG. 6. ~Color! Three-dimensional morphology of a filled diblock copolymeric system. An isosurface in between theA andB components
is colored blue, isocaps are colored red, and the small and large particles are colored black and gray, respectively.
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SIMULATING THE MORPHOLOGY AND MECHANICAL . . . PHYSICAL REVIEW E 67, 031802 ~2003!
meric material (A andB) that is within a given distance~a
unit length! of any particles and plotVp as a function of the
volume fraction of small particles~see Fig. 7!. The results
are averaged over three runs and the standard devia
were found to be negligible. As the volume fraction of sm
particles is increased, the particles come in contact with
affect a greater volume of the matrix.

The fraction of particles that are a part of the largest cl
ter,P, is plotted as a function of the volume fraction of sm
particles in Fig. 8. The data are averaged over three r
with the error bars corresponding with the standard de
tion. Geometric percolation occurred in all systems. Since
a fixed volume fraction, there are a greater number of sm
particles than large ones, these fillers would be expecte
cluster to a greater extent than the larger species~as the
characteristic distance used to indicate clustering is not
dius dependent, but is fixed at one unit in our studies!. This is
in fact the case, with the fraction of particles in the ma
cluster approaching one with increasing number of small p
ticles. Even though small particles are more dispersed~as
indicated by Fig. 7!, they still cluster to a greater degre
within the domain structure of the diblock copolymer~in
part, because there are a greater number of them than
particles!. This increase in clustering is expected to transl
through to the mechanical properties.

Figure 9 reveals the relative strain field for a system c
taining 10% large particles and 10% small particles. The
gions of low strain, corresponding to the stiffer particles,
clearly observed as before. Now, however, the clustering
particles is more apparent than that in Fig. 3~a!. A significant
difference between the cases in Figs. 3~a! and 9 is the area
over which these particles cluster. The smaller partic
spread out over a greater volume of the material and inh
the deformation of the matrix to a greater degree than in
system containing just large particles. Effectively, a larg
volume of polymer matrix is trapped or surrounded by t
particles and therefore less capable of deforming.

Quantitatively, the effects of particle size can be seen
Fig. 10, which depicts the cumulative distribution function
the local relative strain as the volume fraction of partic
varies from being 20% large to 20% small. The data
averaged over three independent runs. The plots show

FIG. 7. The volume fraction of polymeric material that is with
a given distance~a unit length! of any particles,Vp , as a function of
the volume fraction of small particles.
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20% of the system possesses lower strains due to the 20
stiff particles present within the composite; however, in t
upper 80% of the system, a gradual trend is observed.
deformations in the matrix are increasingly inhibited as
volume fraction of smaller particles is increased.

The lower strain fields due to the decrease in particle s
have a direct impact on the Young’s modulus of the mac
scopic material. The percentage increase in Young’s mod
is plotted in Fig. 11, as a function of the volume fraction
small particles. The data are averaged over three runs, w
the error bars represent the standard deviations. An incr
in Young’s modulus of over 30% is observed as the parti
size is altered from all large to all small. This is attributab
to an increase in the total particle surface area, a gre
degree of clustering, and an increase in the volume of po
meric material that is effectively trapped by the particle
These effects result in lower strains throughout the sys
and, hence, an increase in the global Young’s modulus.

IV. CONCLUSIONS

Through a combination of numerical techniques, we w
able to interrelate the structure and micromechanical beh
ior of the copolymer-nanoparticle composites. Through
CH-BD calculations, we could determine the effects of t
microphase separation of the diblocks on the spatial distr
tion of the mobile particles. Through the LSM, we cou
capture the elastic deformation of the resultant hybrid ma
rial. Furthermore, we could investigate the behavior of s
tems that contain up to 1564 particles. For randomly d
persed fillers, simulations involving a relatively low numb
of particles can be sufficient to describe the overall stiffn
of the material and thus, can be large enough to encompa
representative volume element~RVE! of the composite.
However, the tortuous spatial arrangement of particles c
fined in diblock copolymers introduces an additional leng
scale, that of the domain size. To determine the mechan
behavior of such complex materials, it is important to co
sider the morphology of a sufficiently large system that c
tures both the unique structural characteristics of the cop
mer domains and the particles’ spatial arrangement, which
in part, templated by these diblock domains. The LSM h

FIG. 8. The fraction of particles that are a part of the larg
cluster as a function of the volume fraction of small particles. T
overall volume fraction of small and large particles is maintained
20%.
2-9
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G. A. BUXTON AND A. C. BALAZS PHYSICAL REVIEW E 67, 031802 ~2003!
FIG. 9. ~Color! The relative strain fields@defined as (u2u0)/u0, whereu0 is the response of the unreinforced polymeric matrix# for a
system containing a 10% volume fraction of small and a 10% volume fraction of large particles, confined within the domains of a
copolymer.
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proven to be ideally suited for simulating the micromecha
ics of such large systems. While the utility of the LSM
analyzing two-dimensional RVEs has recently been repo
@54#, it would appear that this technique might also pro

FIG. 10. The cumulative distribution function of the relativ
local strain field for systems containing various volume fractions
small and large particles; varying from 20% large to 20% sm
The overall volume fraction of small and large particles is ma
tained at 20%.
03180
-

d

useful in similar three-dimensional analyses.
Through the selective incorporation of nanoparticles in

the domains of a diblock copolymer, three-dimensional
continuous nanoparticle structures were formed. As the v
ume fraction of particles was increased, geometric perc

f
l.
-

FIG. 11. The percentage increase in Young’s modulus as a fu
tion of small particle volume fraction. The overall volume fractio
of small and large particles is maintained at 20%.
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SIMULATING THE MORPHOLOGY AND MECHANICAL . . . PHYSICAL REVIEW E 67, 031802 ~2003!
tion of the particles occurred, and the particles effectiv
formed a rigid network throughout the system. The deform
tions within the polymer matrix are significantly suppress
by the presence of this rigid nanostructural network, and
global stiffness of the material is notably increased. It
worth noting that for materials containing randomly d
persed spheres, rods and platelets, the rods and platelets
superior reinforcement over the spheres@46#. Therefore, the
mechanical properties of diblock copolymers filled with su
high aspect ratio particles may prove to be of particular
terest.

Varying the size of the monodisperse particles and in
ducing bidispersity in the particle size were shown to ex
an appreciable influence over both the morphology of
diblock copolymer and the resultant mechanical propertie
the solid material. Systems containing small fillers exhibi
a greater degree of clustering between the particles. T
ay
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behavior could explain the increased stiffness that was
served in the corresponding macroscopic material. Also
considerable consequence is the volume of polymeric m
rial that is effectively trapped between neighboring nanop
ticles. For a fixed volume fraction of particles, as the parti
size is decreased, the number of particles increases. Co
quently, the volume of material in which the particles a
dispersed increases, and the deformation of a greater vol
of interparticle polymeric material is inhibited.

We conclude that the inclusion of nanoparticles into
bicontinuous diblock copolymer structure results in a sign
cant increase in the reinforcement efficiency of the fillers.
polymeric nanocomposites become increasingly importa
such confinement effects will play a dominant role in op
mizing their mechanical behavior, and result in an expans
of potential applications to which such materials could
employed.
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